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Abstract. Matrix elements, A(k)
g,h (k = 1–6), which describe a general Euler angle transformation

of coordinates to which tesseral spherical tensor operators, Ik,q , are referred have been calculated
and extended to include matrix elements for odd k. The matrix elements have been incorporated
into a general axis-transformation computer program which relates to parameter sets in any one
of the more commonly used tesseral forms, namely, conventional Stevens, normalized Stevens
(Racah normalization) and normalized spherical tensor (Koster and Statz normalization) operators.
Tables of decomposition functions of tesseral spherical tensor operators, Ik,q (B,J) (J = S, I), are
extended to detail decompositions for terms of dimensionBJ 7 and, implicitly, for decomposition of
any two vector operators Ik,q (V ,W ) to experimentally usable single vector forms whereV kV WkW

(one of kV , kW unity) is the dimension of a general term in the decomposition. Tables detailing the
symmetry-allowed terms under the 11 Laue (site) crystal classes are also extended to include tesseral
tensorial sets up to rank 8, thus including the new terms. The use of these functions to describe
electron paramagnetic resonance studies of high-spin nuclear Zeeman interactions is discussed.

1. Introduction

This paper is aimed in part at the EPR experimentalist who wishes to use spin operators
in irreducible tesseral spherical tensor form, or to relate parameter sets, perhaps in non-
irreducible form (second-rank Cartesian tensors or Stevens operators for example), to an
irreducible set. We outline the procedures for obtaining the necessary matrix elements to
effect such transformations. Tables of some of the matrix elements in explicit algebraic form,
including previously unpublished elements for odd k, are given; complete tables are available
from sources indicated. A computer program is described which uses the algebraic forms of
the rotation matrix elements to effect general axis transformations and/or interconvert spin-
Hamiltonian (SH) parameters in any one of the commonly used tesseral forms.

A second aim is to extend tensorial decompositions of two-vector tesseral tensor operators
describing terms of dimension J1J

7
2 into experimentally usable single-vector forms. Tables of

decompositions are included where the lowest site symmetry, 1̄ Laue class, is assumed. The
production of such terms leads generally to eighth-rank tensors for which it is then required to
know the site symmetry constraints which restrict the terms to be included in the SH. Tables
of symmetry-allowed terms for eighth-rank irreducible tesseral tensors are listed for each of
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the 11 Laue crystal classes. In combination with earlier related listings, the tables of this paper
can be used to analyse EPR spectra of transition ions with S � 7/2, I � 7/2 at sites of any
symmetry. To our knowledge these tables have not appeared previously.

Since the appearance of a paper by Kikuchi and Matarrese [1] some four decades ago and
generalizations by the Buckmaster group [2, 3], the use of spherical tensor spin operators has
become relatively widespread in electron paramagnetic resonance (EPR) spectroscopy. Early
in the historical development of an appropriate general SH, the utility of an expression with
real coefficients, that is expressed as tesseral combinations of complex operator functions,
was recognized. Pryce [4] and Abragam and Pryce [5] developed the SH using tesseral
combinations of operator equivalents, derived earlier by Stevens [6] and Elliot and Stevens
[7]. These operator equivalents have the same transformation properties as spherical harmonic
polynomials Yk,q (q integral in the range −k � q � k). For J � 2 the Stevens nomenclature
is still widely used, particularly for field-independent terms of dimension J 4, J 6, but there are
a number of drawbacks:

(i) as with the Cartesian tensor nomenclature commonly used to represent second-rank
tensor quantities, there are redundancies involved which become particularly evident when
formulating some high-spin terms;

(ii) most early tabulations excluded operators with q < 0, necessary to describe all but a
few high-symmetry point groups (we note that Rudowicz [8] refers to the full set of Oq

k

(−k � q � k) as ‘extended’ Stevens operators); and
(iii) Stevens operator equivalents are not normalized, which has the effect that there is no

simple function of the parameters (operator coefficients) by which to gauge their ‘size’.

In 1960 Kikuchi and Matarrese [1] in their EPR study of Mn2+ in calcite remarked:
‘An alternative procedure is suggested by the property that the spherical harmonics, Yl,m,
transform like Racah [9] spherical tensor operators, T (l)

m , generated by . . . ’. The advantages
for EPR of such a spherical tensor nomenclature have been documented extensively since that
time [3, 8, 10, 11] and we shall only dwell briefly on a few of the more pertinent details.
Principally, there need be no redundancy in the terms, the behaviour of the operators under
axis transformation is easily obtained via tabulated functions and the resulting operators are
normalized. Two normalizations have been used: (i) that of Racah spherical tensor operators
[9] (alternatively Buckmaster Õq

k -operators [2]); and (ii) Koster and Statz Tk,±q-operators [12].
Buckmaster et al [3] first used the latter in EPR and detailed their behaviour under a polar
axis transformation via listed d

(k)
q ′,q(β) finite rotation matrix elements. A SH so formulated

contained no redundancies and the resulting Hamiltonian matrix was Hermitian. However,
the operator coefficients were still complex and, additionally, the ‘size’ as measured by the
norm of the coefficients was not preserved under axis rotation. (This is a generalization for
orthogonal tensors of a well-known theorem in vector analysis: the length (norm) of a vector
is invariant under an orthogonal transformation.) Gaite and co-workers [13, 14] first utilized
this important property via normalized (tesseral) combinations of either Racah (usually now,
after [13, 14, 8], written as O ′

k
q) or Koster and Statz spherical tensor operators. The tesseral

form had been used already for many years to represent the real forms of the H-like p, d, f
wavefunctions and was also widely used in crystal-field theory (see Prather [15] and Hutchings
[16]) and in spin-operator form by Scherz [17].

Rudowicz [8] and, independently, two of the present authors [10] outlined the desirability
of having a set of tabulated matrix elements to effect general axis transformations of coordinate
frames to which either Stevens operators or tesseral combinations of spherical tensor operators
are referred. The former dealt with both extended and normalized Stevens operators and
produced matrix elements for a polar rotation R(φ, θ, 0); a general transformation of axes was
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envisaged as a succession of polar rotations. Reference [10] outlined, for tesseral spherical
tensor operators, the calculation of generalized rotation matrix elements, A(k)

g,h (actually labelled

A
(l)
h,k in that reference), in two different notations, f (α, β, γ ) and f (aij ), where α, β, γ are the

usual Euler angles as defined by Edmonds [18] and the matrix a represents a general orthogonal
transformation of the axis frame to which the components of the (real or fictitious) electron
spin S are referred. Matrix elements for k = 2 [10] and for k = 4, 6 [19] were listed in both
notations. The present paper extends these calculations and listings to odd-k matrix elements.

The second aim arises from the necessity of having as near a complete set of operators as
possible with which to cover complicated high-spin systems. Buckmaster et al [3] outlined the
process for obtaining experimentally usable single-vector spherical tensor spin operators from
a two-vector form Tk,q(B,S); the most general form requires decomposition of three-vector
operators Tk,q(B,S, I) [11]. (It is noted that no unique decomposition of such a triple-vector
tensor operator exists, just as there is no unique way of coupling three angular momentum
vectors [18]. Different decomposition routes produce different, but equivalent, parameter
sets [11].)

Reference [11] outlined the production of a maximally reduced SH (MRSH) obtained,
implicitly (see also [20]), from a two-vector form Ik,q(V ,W ) where V ,W can represent
any one of B,S, I and V kV WkW , with one or other of kV , kW unity, is the dimension of a
general term in the decomposition. These functions have been utilized in the international
program EPRNMR [21]. However, there are evidently missing functions. So far as we are
aware, no general decompositions of Ik,q(B,S, I) exist and, as found in a recent detailed
study of hyperfine structure of 49Ti in zircon [20], certain eighth-rank tensor decompositions
were required but not available. This publication also seeks to remedy this latter deficiency.
Production of eighth-rank single-vector tesseral tensor operators requires also an extension of
table 4 of [10] detailing the symmetry-allowed tesseral operators for paramagnetic sites of a
given Laue class.

2. Theory

2.1. The tesseral spherical tensor operators

We shall utilize throughout the definitions (see also [10, 11])

Ik,0 = Tk,0 (1a)

Ik,q = 1√
2

{
(−1)qTk,q + Tk,−q

}
0 � q � k (1b)

Ik,−q = i√
2

{
(−1)q+1Tk,q + Tk,−q

}
0 � q � k (1c)

to define tesseral combinations of Koster and Statz spherical tensor operators (hereafter simply
tesseral spherical tensor operators, TSTO) in the nomenclature of Edmonds [18] where, from
[10], Ik,q is written for the tesseral operator to distinguish it from the components Tk,q (listed
by Buckmaster et al [3] for k = 1–7). Shorthand notations, for example Tk,q = Tk,q(J),
have been used in equations (1) and will be used often throughout this paper. (We have
followed Edmonds [18] and most recent publications (see for example [8, 22]) in using the
subscripts k, q to define the tesseral operators while noting that many earlier publications used
the more familiar l, m quantum numbers. The reader should note in particular the change in
nomenclature from the two references [10, 11], which are widely referred to in this paper.
The symbol I is used throughout in place of the symbol T used in the text of references
[10, 11].) The definitions of equations (1a)–(1c) lead naturally to coefficients of the Ik,q being
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written [10, 11] as Bk,q (some care is required here, as this notation has also been used for
the coefficients of Tk,q) as distinct from the widely used Stevens notation B

q

k . This notation
also allows an easy progression to a more general coefficient Bk1,k2,k3

k,q (see particularly [11] for
terms in a MRSH). It is readily shown [18] via the definition [9, 18]

T
†
k,q = (−1)qTk,−q (2)

that the operators Ik,q , as distinct from the constituent Tk,q , are Hermitian self-adjoint
(I†

k,q = Ik,q and I†
k,−q = Ik,−q) and the coefficients are now real. (We have followed the

Racah [9] definition of the Hermitian adjoint of an operator, equation (2), while noting that
mathematical texts frequently use the terms ‘adjugate’ or ‘tranjugate’ rather than Hermitian
adjoint [23].) Using again the relation (2), equations (1b) and (1c) become

Ik,q = (−1)q√
2

{
Tk,q + T

†
k,q

}
(3a)

Ik,−q = i(−1)q√
2

{
−Tk,q + T

†
k,q

}
. (3b)

Clearly equations (3a), (3b) may be used alternatively to (1b), (1c). They are related simply by
a factor

√
2× (−1)q to the tesseral functions used recently by Buckmaster and Chatterjee [22].

2.2. The spin Hamiltonian

The SH to be used is written in the notation outlined in [11], namely as

Hk1,k2
S = G

{ |k1−k2|∑
q=−|k1−k2|

B
k1,k2
|k1−k2|,qI

k1,k2
|k1−k2|,q(V ,W ) +

k1+k2∑
q=−(k1+k2)

B
k1,k2
(k1+k2),q

Ik1,k2
(k1+k2),q

(V ,W )

}
(4)

where the vectors V ,W can represent any one of B,S, I. In equation (4), k is constrained
by the triangle condition |k1 − k2| � k � k1 + k2 and must be even to preserve time-reversal
invariance. (In terms of the nomenclature of the previous section, k1, k2 could have been written
as kV , kW .) Equation (4) is a generalization of the tesseral operator definitions of equations
(1). The following two examples will illustrate its use. The equation

H0,4
S =

4∑
q=−4

B
0,4
4,qI

0,4
4,q(B̂,J)

with k1 = 0, k2 = 4, G = 1
2 and J = S, I represents field-independent (zero-field) terms

of dimension J 4; B̂ is a unit vector in an arbitrary direction and could be omitted. Similarly
the superscripts can, without ambiguity, be omitted leading to more familiar expressions for
zero-field terms of dimension S4 or I 4 [11]. Similarly the equation

H1,3
S = G

{
2∑

q=−2

B
1,3
2,qI

1,3
2,q(B̂,J) +

4∑
q=−4

B
1,3
4,qI

1,3
4,q(B̂,J)

}

with k1 = 1, k2 = 3 and J = S, I, represents Zeeman terms of dimension BJ 3; in this
instance B̂ is a unit vector in the direction of the magnetic field B. The factor G takes values
geβeB,−gnβnB when J = S, I respectively; ge, βe, gn, βn are the free-electron g, the Bohr
magneton, the nuclear g and the nuclear magneton, respectively. (From [11], the factor G in
equation (4) takes values (geβeB)2 or (−gnβnB)2 for terms quadratic in field. The reader is
referred to references [11, 20] for further detail on the formulation and detail of equation (4).)

Equation (4) seems at first sight to be a more cumbersome way of expressing the SH than the
equivalent equation expressed in Stevens (or extended Stevens) operators but, as emphasized in
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[11], equation (4) is maximally reduced and there are no redundancies as distinct from the case
for the equivalent Stevens expression. In this latter regard, the reader is referred again to [11]
for a more detailed discussion on the SH for terms of dimensions BJ 3, BJ 5. Decomposition
of the two-vector operators of (4) to experimentally usable single-vector operators is outlined
in subsection 3.3 below.

2.3. Coordinate rotations and derivation of the general rotation matrix elements, A(k)
g,h

Generalized coordinate rotations in EPR have been discussed in some detail in [10]. The basis
is the general orthogonal transformation

J = aJ ′ (5)

where the prime refers to the components of the spin vector in the new coordinates. a,
constrained by the orthogonality relations aikajk = δij , akiakj = δij and the condition
Det(a) = +1, defines a (3 × 3 in this case) proper rotation matrix. The SH must be invariant
under such a transformation and so also must the SH parameters [10].

Transformation relations of Tk,q-operators are formulated most conveniently in terms of
the Euler angles α, β, γ (here we use the axis conventions detailed in Edmonds [18], including
choice of phase, and used also by Buckmaster et al [3]) via the equation

Tk,q(J) = eiqα
k∑

q ′=−k

(−1)q
′−qd

(k)
q ′,q(β)Tk,q ′(J ′)eiq ′γ (6)

for the particular case of spin operator J . When the transformation (6) is applied to the SH
(4), the relations between the parameters B ′

k,q in the new frame and the Bk,q of the old frame
may be written via equations (12) of reference [10] as[

B ′
k,q

]
(2k+1)×1

=
[
A

(k)
g,h

]
(2k+1)×(2k+1)

× [
Bk,q

]
(2k+1)×1

(7)

where the integral subindices g, h relate to the quantum numbers q through

g or h = 1, 2, 3, 4, 5, . . . , 2k, 2k + 1

when q = 0, 1, −1, 2, −2, . . . , k, −k.

(Again, the attention of the reader is drawn to the change in nomenclature from [10] where the
symbol A(l)

h,k was used.) Equation (7) represents an orthogonal transformation and, as defined
for the 3 × 3 matrix a in equation (5), A is a proper rotation matrix of dimension 2k + 1. The
axis rotation can however be more generally expressed, for reasons discussed below, in terms
of the orthogonal rotation given by equation (5) (see reference [10]). The relations between
the Euler and aij notations are given in equations (13) of reference [10] and detailed in table 1
below.

Table 1 also details the contracted notation to be used for the listed matrix elements A
(k)
g,h.

The matrix elements for k = 1 are given simply by


A
(1)
1,1 A

(1)
1,2 A

(1)
1,3

A
(1)
2,1 A

(1)
2,2 A

(1)
2,3

A
(1)
3,1 A

(1)
3,2 A

(1)
3,3


 =

(
a33 a13 a23

a31 a11 a21

a32 a12 a22

)
. (8)

Those for k = 2, 3 are listed in table 2. (The k = 2 matrix elements are repeated from reference
[10] but, for consistency, are listed here in the more compact notation of table 1.) Those for
k = 4, 5, 6 are obtainable from the authors or via the program ROTSTO (see the appendix).
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Table 1. Relations between the Euler notation, aij notation and contracted aij notation.

Euler angle notation aij notation Contracted notation

(1 + cosβ) cos(α + γ ) a11 + a22 a1+

−(1 − cosβ) cos(α − γ ) a11 − a22 a1−
−(1 + cosβ) sin(α + γ ) a12 − a21 a2−
−(1 − cosβ) sin(α − γ ) a12 + a21 a2+

sin β eiα a13 + ia23 —

− sin β e−iγ a31 + ia32 —

sin β — s

cosβ a33 c

sinn β einα (a13 + ia23)
n Cnα + iSnα

(−1)n sinn β e−inγ (a31 + ia32)
n Cnγ + iSnγ

(1 + cosβ)ne−in(α+γ ) (a1+ + ia2−)n Cna + iSna

(−1)n(1 − cosβ)nein(α−γ ) (a1− + ia2+)
n Cnb + iSnb

The functions f
(k)
m′,m = f

(k)
m′,m(cosβ) = f

(k)
m′,m(a33) of table 2 are repetitively used parts of

the d
(k)
m′,m(β) finite rotation matrix elements where f

(2)
1,±1 = 2a33 ∓ 1, f (3)

1,±1 = 3a33 ∓ 1 and

f
(3)
2,±1 = 15a2

33 ∓ 10a33 − 1.

3. Discussion

3.1. Applications of the rotation matrix elements A
(k)
g,h

These have been detailed elsewhere [10] and we shall dwell only on a few more pertinent points.
Most applications are effected via the program ROTSTO which can be used as a stand-alone
procedure or called as a subroutine in more complicated calculations.

Firstly, the correctness of the matrix elements: it has been checked algebraically by
independent replicate calculations by three of the authors (see reference [24] for the most
recent), and numerically in the program ROTSTO (in each case to the precision of the input
rotation matrix): (i) that the input rotation matrix and all generated rotation matrices are proper
rotation matrices as defined earlier; and (ii) that invariance in the norm is ensured for tensorial
sets of ranks 1–6 for a general rotation R(αβγ ) with each angle varied by small increments.

The simplest and most obvious application is that of comparison of SH parameters for
different formulations of the SH and where different sets of reference axes may have been
chosen. This application refers to input parameters from SHs expressed in one of the three
tesseral forms outlined in the introduction and utilizes the interrelations expressed in equations
(14), (15) of [10] and table 1 of [11] (see also references [8, 25]). Output is expressed in all
three forms.

The advantage of the notation used in table 2 over a simple Euler angle notation [10]
is that any change of basis can be carried through a series of calculations. Two examples
involving perturbation approximations follow. The most common perturbation calculation is
that involving a predominant electronic Zeeman term in the SH. Then a rotation of coordinates
is required which diagonalizes the Zeeman term. The rotation is defined by equation (5) where
the elements of a (or, equation (8), the elements of A) are chosen such that βeB · gS becomes
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Table 2. Matrix elements A
(k)
g,h, k = 2, 3, in the aij notation detailed in table 1.

k g h mg mh Matrix elements A
(2)
g,h

2 1 1 0 0 1
2 (3a

2
33 − 1)

2 1 2 0 1
√

3a13a33

2 1 3 0 −1
√

3a23a33

2 1 4 0 2
√

3
2 C2α

2 1 5 0 −2
√

3
2 S2α

2 2 1 1 0
√

3a31a33

2 2 2 1 1 1
2 (a1+f

(2)
1,1 + a1−f

(2)
1,−1)

2 2 3 1 −1 1
2 (−a2−f

(2)
1,1 + a2+f

(2)
1,−1)

2 2 4 1 2 1
2 {a13(a1+ + a1−) + a23(a2− − a2+)}

2 2 5 1 −2 1
2 {a23(a1+ + a1−) + a13(a2+ − a2−)}

2 3 1 −1 0
√

3a32a33

2 3 2 −1 1 1
2 (a2−f

(2)
1,1 + a2+f

(2)
1,−1)

2 3 3 −1 −1 1
2 (a1+f

(2)
1,1 − a1−f

(2)
1,−1)

2 3 4 −1 2 1
2 {a23(a1− − a1+) + a13(a2+ + a2−)}

2 3 5 −1 −2 1
2 {a13(a1+ − a1−) + a23(a2+ + a2−)}

2 4 1 2 0
√

3
2 C2γ

2 4 2 2 1 1
2 {a31(a1+ + a1−) − a32(a2+ + a2−)}

2 4 3 2 −1 1
2 {a32(a1− − a1+) + a31(a2+ − a2−)}

2 4 4 2 2 1
4 (C2a + C2b)

2 4 5 2 −2 1
4 (S2b − S2a)

2 5 1 −2 0
√

3
2 S2γ

2 5 2 −2 1 1
2 {a32(a1+ + a1−) + a31(a2+ + a2−)}

2 5 3 −2 −1 1
2 {a31(a1+ − a1−) + a32(a2+ − a2−)}

2 5 4 −2 2 1
4 (S2a + S2b)

2 5 5 −2 −2 1
4 (C2a − C2b)

gβeBS ′
z in the rotated coordinate frame. For symmetric g the conditions are [26, 27]

ai3 = 1

g
(ei · gη) (i = 1, 2, 3) (9)

where ei are the unit vectors in the original directions x,y, z respectively and η is a unit
vector along which the magnetic field is directed, and the factor g of equation (9) is given by
g = (η̃ · g̃ · g · η)1/2; g is the g-parameter matrix (‘tensor’). This fixes three elements of a
(or A), the others being arbitrary within the constraint that a represent a proper rotation. The
continuing details of the perturbation procedures incorporating matrix elements A(k)

g,h are given
in [10]. The chief advantage is that complicated perturbation calculations can be effected
to the desired order of approximation by computer, drawing on tabulated functions and the
coordinate rotation program ROTSTO, rather than via lengthy and often unwieldy formulae.

For a predominant second-degree fine-structure term, one is restricted generally to
numerical procedures. One might wish for example, as detailed by Buckmaster et al [3],
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Table 2. (Continued)

k g h mg mh Matrix elements A
(3)
g,h

3 1 1 0 0 1
2 a33(5a2

33 − 3)

3 1 2 0 1
√

6
4 a13(5a2

33 − 1)

3 1 3 0 −1
√

6
4 a23(5a2

33 − 1)

3 1 4 0 2
√

15
2 a33C2α

3 1 5 0 −2
√

15
2 a33S2α

3 1 6 0 3
√

10
4 C3α

3 1 7 0 −3
√

10
4 S3α

3 2 1 1 0
√

6
4 a31(5a2

33 − 1)

3 2 2 1 1 1
8 (a1+f

(3)
1,1 + a1−f

(3)
1,−1)

3 2 3 1 −1 1
8 (−a2−f

(3)
1,1 + a2+f

(3)
1,−1)

3 2 4 1 2
√

10
8 {(a13a1+ + a23a2−)f

(3)
2,1 + (a13a1− − a23a2+)f

(3)
2,−1}

3 2 5 1 −2
√

10
8 {(a23a1+ − a13a2−)f

(3)
2,1 + (a23a1− + a13a2+)f

(3)
2,−1}

3 2 6 1 3
√

15
8 {(a1+C2α + a2−S2α) + (a1−C2α − a2+S2α)}

3 2 7 1 −3
√

15
8 {+(a1+S2α − a2−C2α) + (a1−S2α + a2+C2α)}

3 3 1 −1 0
√

6
4 a32(5a2

33 − 1)

3 3 2 −1 1 1
8 (a2−f

(3)
1,1 + a2+f

(3)
1,−1)

3 3 3 −1 −1 1
8 (a1+f

(3)
1,1 − a1−f

(3)
1,−1)

3 3 4 −1 2 −
√

10
8 {(a23a1+ − a13a2−)f

(3)
2,1 − (a23a1− + a13a2+)f

(3)
2,−1}

3 3 5 −1 −2
√

10
8 {(a13a1+ + a23a2−)f

(3)
2,1 + (−a13a1− + a23a2+)f

(3)
2,−1}

3 3 6 −1 3 −
√

15
8 {(a1+S2α − a2−C2α) − (a1−S2α + a2+C2α)}

3 3 7 −1 −3
√

15
8 {(a1+C2α + a2−S2α) + (−a1−C2α + a2+S2α)}

3 4 1 2 0
√

15
2 a33C2γ

3 4 2 2 1
√

10
8 {(a31a1+ − a32a2−)f

(3)
2,1 + (a31a1− − a32a2+)f

(3)
2,−1}

3 4 3 2 −1 −
√

10
8 {(a31a2− + a32a1+)f

(3)
2,1 − (a31a2+ + a32a1−)f

(3)
2,−1}

3 4 4 2 2 1
4 (C2af

(3)
2,2 + C2bf

(3)
2,−2)

3 4 5 2 −2 1
4 (−S2af

(3)
2,2 + S2bf

(3)
2,−2)

3 4 6 2 3
√

6
8 {(a13C2a + a23S2a) + (a13C2b − a23S2b)}

3 4 7 2 −3
√

6
8 {(a23C2a − a13S2a) + (a23C2b + a13S2b)}

to transform a set of EPR parameters to coordinates which diagonalize the second-degree fine-
structure term, the D-matrix in the conventional SH, or, perhaps in the case of relatively high
site point group symmetry, refer the SH parameters to a threefold (or pseudo-threefold) or
fourfold (or pseudo-fourfold) symmetry axis. In this latter example one might use the pseudo-
symmetry search options of the program ROTSTO to find the pseudo-cubic axes and then the
normal coordinate rotation option to obtain all of the SH parameters in the ‘new’ (pseudo-
cube) coordinate frame. Reference [28] gives such an example: Fe3+/α-quartz. The relevant
equations for the pseudo-symmetry options of program ROTSTO are given in the next section.
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Table 2. (Continued)

k g h mg mh Matrix elements A
(3)
g,h

3 5 1 −2 0
√

15
2 a33S2γ

3 5 2 −2 1
√

10
8 {(a31a2− + a32a1+)f

(3)
2,1 + (a31a2+ + a32a1−)f

(3)
2,−1}

3 5 3 −2 −1 −
√

10
8 {(−a31a1+ + a32a2−)f

(3)
2,1 + (a31a1− − a32a2+)f

(3)
2,−1}

3 5 4 −2 2 1
4 (S2af

(3)
2,2 + S2bf

(3)
2,−2)

3 5 5 −2 −2 1
4 (C2af

(3)
2,2 − C2bf

(3)
2,−2)

3 5 6 −2 3 −
√

6
8 {(a23C2a − a13S2a) − (a23C2b + a13S2b)}

3 5 7 −2 −3
√

6
8 {(a13C2a + a23S2a) − (a13C2b − a23S2b)}

3 6 1 3 0
√

10
4 C3γ

3 6 2 3 1
√

15
8 {(a1+C2γ − a2−S2γ ) + (a1−C2γ − a2+S2γ )}

3 6 3 3 −1
√

15
8 {−(a2−C2γ + a1+S2γ ) + (a2+C2γ + a1−S2γ )}

3 6 4 3 2 −
√

6
8 {(−a31C2a + a32S2a) + (−a31C2b + a32S2b)}

3 6 5 3 −2 −
√

6
8 {(a31S2a + a32C2a) − (a31S2b + a32C2b)}

3 6 6 3 3 1
8 (C3a + C3b)

3 6 7 3 −3 1
8 (−S3a + S3b)

3 7 1 −3 0
√

10
4 S3γ

3 7 2 −3 1
√

15
8 {(a2−C2γ + a1+S2γ ) + (a2+C2γ + a1−S2γ )}

3 7 3 −3 −1
√

15
8 {(a1+C2γ − a2−S2γ ) + (−a1−C2γ + a2+S2γ )}

3 7 4 −3 2
√

6
8 {(a31S2a + a32C2a) + (a31S2b + a32C2b)}

3 7 5 −3 −2
√

6
8 {(a31C2a − a32S2a) + (−a31C2b + a32S2b)}

3 7 6 −3 3 1
8 (S3a + S3b)

3 7 7 −3 −3 1
8 (C3a − C3b)

3.2. Equations for pseudo-cube analysis

This work is detailed in papers by Gaite and co-workers (see references [13, 14]). Here we
shall be content to give the relevant equations for tensors of ranks 4 and 6 (the latter, so far as
we are aware, have not appeared previously). The criteria for threefold and fourfold axes of
cubic pseudo-symmetry in a set of parameters of dimension S4 have been set out by Gaite and
Michoulier [13] and in somewhat modified form by Mombourquette et al [28]. Since, as noted
above, the transformation properties of irreducible tensors under axis transformation depend
only on their rank, k, we may use the simpler form, Bk,q , for Bk1,k2,k3

k,q and the formulae which
follow refer to any irreducible tensors of ranks 4 and 6. We define, for k = 4, 6 throughout,

Nk =
∑
q

(Bk,q)
2 (−k � q � k)

where (Nk)
1/2 is the norm of the set.

3.2.1. Fourfold axes.

ε
(k)
4 =

∑
q

′
(Bk,q)

2/Nk (q �= 0,±4) (10)
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γ
(k)
4 = [

(Bk,4)
2 + (Bk,−4)

2
]1/2 / ∣∣Bk,0

∣∣ (11)

δ
(k)
4 = 1 −

(
a′
k

a∗
k

)2

(12)

where

a′
4 = 7

12

{∣∣B4,0

∣∣ +

√
5√
7

[
(B4,4)

2 + (B4,−4)
2
]1/2

}

a∗
4 =

[
7

12
N4

]1/2

a′
6 = 1

8

{∣∣B6,0

∣∣ +
√

7
[
(B6,4)

2 + (B6,−4)
2
]1/2

}

a∗
6 =

[
1

6
N6

]1/2

.

3.2.2. Threefold axes.

ε
(k)
3 =

∑
q

′
(Bk,q)

2/Nk (q �= 0,±3,±6) (13)

γ
(4)
3 = [

(B4,3)
2 + (B4,−3)

2
]1/2 / ∣∣B4,0

∣∣ (14)

γ
(6)
3 =

{[
(B6,3)

2 + (B6,−3)
2
]1/2

+
[
(B6,6)

2 + (B6,−6)
2
]1/2

}/ ∣∣B6,0

∣∣ (15)

δ
(k)
3 = 1 −

(
b′
k

b∗
k

)2

(16)

where

b′
4 = 7

27

{∣∣B4,0

∣∣ +
2
√

5√
7

[
(B4,3)

2 + (B4,−3)
2
]1/2

}

b∗
4 =

[
7

27
N4

]1/2

b′
6 = 32

81

{∣∣B6,0

∣∣ +
35

√
3

12

[
(B6,3)

2 + (B6,−3)
2
]1/2

+

√
462

24

[
(B6,6)

2 + (B6,−6)
2
]1/2

}

b∗
6 =

[
32

81
N6

]1/2

.

The primed summation symbol in equations (10), (13) signifies that the summation
includes only the specified values of q.

The details of the application of equations (10)–(16) have been given elsewhere
[13, 14, 28]. In summary, one varies the angular coordinates over a grid on the unit-sphere
surface to find the polar and azimuthal angles, θ, φ respectively, with respect to the original
coordinate frame, for which the ‘search’ parameter, ε(k)n of equations (10), (13) (n = 3, 4;
k = 4, 6), is minimized, in order to find the polar coordinates of the pseudo-threefold and
fourfold axes respectively of the experimental Bk,q-tensor. Equations (10)–(16) together with
the rotation matrix elements A

(k)
g,h enable the pseudo-cube procedures in program ROTSTO.

As in the axis rotation options, input can be in any one of the three tesseral forms described
in the theory section above. As a check, the ‘distortion’ parameters γ (k)

n (equations (11), (14),
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(15)) and δ(k)n (equations (12), (16)) are also computed at each angular interval. For exact cubic
symmetry the search parameter ε and the distortion parameters γ, δ take the values shown in
table 3.

Table 3. Values of the search parameter ε(k)n and the distortion parameters γ
(k)
n , δ

(k)
n in exact cubic

symmetry

Fourfold axes Threefold axes

ε
(k)
4 γ

(k)
4 δ

(k)
4 ε

(k)
3 γ

(k)
3 δ

(k)
3

l = 4 0
√

5/
√

7 0 0 2
√

5/
√

7 0

l = 6 0
√

7 0 0
√

7(2
√

5 +
√

22)/8
√

3 0

3.3. J1J
7
2 terms in the SH.

As outlined in [3], and detailed for the case V = B, W = S in [11], the two-vector operators
of equation (4) are decomposed to experimentally usable single-vector operators via

T
k1,k2
k,q =

k1∑
q1=−k1

k2∑
q2=−k2

(−1)k1+k2+q(2k + 1)
1/2
(
k1 k2 k

q1 q2 −q

)
Tk1,q1Tk2,q2 . (17)

The principles involved are essentially those used by Grant and Strandberg [29] for a
paramagnetic ion in cubic symmetry and by Buckmaster and Chatterjee [30] for Eu2+ in
tetragonal symmetry, with the two important exceptions that here we consider the more general
case of TSTO and assume the lowest possible site symmetry, 1̄ Laue class. The symmetry
restrictions on the terms to be included in the SH for various site symmetries are considered in
the next section. For the tensor decompositions to be now outlined we consider the particular
cases V = B = 1, W = J = 7/2 (J = S, I ) but note (see also [20]) that implicitly covered
are all cases where V , W can be any one of B, S, I (B � 1). The B

k1,k2
k,q of equation (4) are

components of irreducible tensors of rank k.
The tensor decompositions required are defined generally by equations (4), (17). Here

we shall give results for the particular example for terms of dimension BJ 7 when [11] the SH
may be written as

H(1,7)
S = G

{
6∑

m=−6

(B
1,7
6,mU7,6,m) +

8∑
m=−8

(B
1,7
8,mU7,8,m)

}
(18)

where the UlJ ,l,m (functions of Il,m(J), J = S, I; IJ = 7, l = lJ + 1 = 8, l = lJ − 1 = 6
and −l � m � l) are listed in tables 4(a), 4(b). As earlier, G = geβeB or −gnβnB

according as J = S, I respectively. These tables are formatted precisely as for the BJ 3,
BJ 5 decompositions of table 3 of [11] for consistency. It is noted that in equation (18) and
in tables 4(a), (b) we have replaced k, q by the quantum numbers l, m throughout, again for
consistency with [11].

In tables 4(a), 4(b), B̂x, B̂y, B̂z are components of the unit vector B̂ along which the
magnetic field is directed and [11]

B̂z = I1,0(B̂) B̂x = I1,1(B̂) B̂y = I1,−1(B̂). (19)

It follows, on replacing equations (19) with equations (20):

Jz = I1,0(J) Jx = I1,1(J) Jy = I1,−1(J) (J = S, I) (20)
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Table 4. (a) UlJ ,l,m of equation (18) for lJ = 7; l = lJ + 1; −l � m � l. (b) UlJ ,l,m of equation
(18) for lJ = 7; l = lJ + 1; −l � m � l.

(a) lJ l m UlJ ,l,m

7 6 0 1√
15

{
−√

7B̂zI7,0 − 2B̂xI7,1 − 2B̂yI7,−1

}
7 6 1 1√

35

{√
7B̂xI7,0 − 4B̂zI7,1 − √

6
[
B̂xI7,2 + B̂yI7,−2

]}
7 6 −1 1√

35

{√
7B̂yI7,0 − 4B̂zI7,−1 +

√
6
[
B̂yI7,2 − B̂xI7,−2

]}
7 6 2 1√

14

{
B̂xI7,1 − B̂yI7,−1 − √

6B̂zI7,2 − √
3
[
B̂xI7,3 + B̂yI7,−3

]}
7 6 −2 1√

14

{
B̂xI7,−1 + B̂yI7,1 − √

6B̂zI7,−2 +
√

3
[
B̂yI7,3 − B̂xI7,−3

]}
7 6 3 1√

42

{√
2
[
B̂xI7,2 − B̂yI7,−2

]
− 4B̂zI7,3 − √

11
[
B̂xI7,4 + B̂yI7,−4

]}
7 6 −3 1√

42

{√
2
[
B̂xI7,−2 + B̂yI7,2

]
− 4B̂zI7,−3 +

√
11
[
B̂yI7,4 − B̂xI7,−4

]}
7 6 4 1√

35

{
B̂xI7,3 − B̂yI7,−3 − √

11
[
B̂zI7,4 + B̂xI7,5 + B̂yI7,−5

]}
7 6 −4 1√

35

{
B̂xI7,−3 + B̂yI7,3 +

√
11
[
−B̂zI7,−4 + B̂yI7,5 − B̂xI7,−5

]}
7 6 5 1

2
√

70

{
B̂xI7,4 − B̂yI7,−4 − 2

√
2B̂zI7,5 − √

26
[
B̂xI7,6 + B̂yI7,−6

]}
7 6 −5 1

2
√

70

{
B̂yI7,4 + B̂xI7,−4 − 2

√
2B̂zI7,−5 +

√
26
[
B̂yI7,6 − B̂xI7,−6

]}
7 6 6 1√

210

{
B̂xI7,5 − B̂yI7,−5 − √

26B̂zI7,6 − √
91
[
B̂xI7,7 + B̂yI7,−7

]}
7 6 −6 1√

210

{
B̂yI7,5 + B̂xI7,−5 − √

26B̂zI7,−6 +
√

91
[
B̂yI7,7 − B̂xI7,−7

]}
(b) lJ l m UlJ ,l,m

7 8 0 1√
30

{
4B̂zI7,0 − √

7
[
B̂xI7,1 + B̂yI7,−1

]}
7 8 1 1

4
√

5

{
2
√

6B̂xI7,0 +
√

42B̂zI7,1 − √
7
[
B̂xI7,2 + B̂yI7,−2

]}
7 8 −1 1

4
√

5

{
2
√

6B̂yI7,0 +
√

42B̂zI7,−1 +
√

7
[
B̂yI7,2 − B̂xI7,−2

]}
7 8 2 1

4

{√
3
[
B̂xI7,1 − B̂yI7,−1

]
+ 2

√
2B̂zI7,2 − B̂xI7,3 − B̂yI7,−3

}
7 8 −2 1

4

{√
3
[
B̂yI7,1 + B̂xI7,−1

]
+ 2

√
2B̂zI7,−2 + B̂yI7,3 − B̂xI7,−3

}
7 8 3 1

4
√

3

{√
11
[
B̂xI7,2 − B̂yI7,−2

]
+

√
22B̂zI7,3 − √

2
[
B̂xI7,4 + B̂yI7,−4

]}
7 8 −3 1

4
√

3

{√
11
[
B̂yI7,2 + B̂xI7,−2

]
+

√
22B̂zI7,−3 +

√
2
[
B̂yI7,4 − B̂xI7,−4

]}
7 8 4 1

2
√

10

{√
11
[
B̂xI7,3 − B̂yI7,−3

]
+ 4B̂zI7,4 − B̂xI7,5 − B̂yI7,−5

}
7 8 −4 1

2
√

10

{√
11
[
B̂yI7,3 + B̂xI7,−3

]
+ 4B̂zI7,−4 + B̂yI7,5 − B̂xI7,−5

}
7 8 5 1

4
√

5

{√
26
[
B̂xI7,4 − B̂yI7,−4 + B̂zI7,5

]
− B̂xI7,6 − B̂yI7,−6

}
7 8 −5 1

4
√

5

{√
26
[
B̂yI7,4 + B̂xI7,−4 + B̂zI7,−5

]
+ B̂yI7,6 − B̂xI7,−6

}
7 8 6 1

4
√

15

{√
91
[
B̂xI7,5 − B̂yI7,−5

]
+ 2

√
14B̂zI7,6 − B̂xI7,7 − B̂yI7,−7

}
7 8 −6 1

4
√

15

{√
91
[
B̂yI7,5 + B̂xI7,−5

]
+ 2

√
14B̂zI7,−6 + B̂yI7,7 − B̂xI7,−7

}
7 8 7 1

4

{√
7
[
B̂xI7,6 − B̂yI7,−6

]
+

√
2B̂zI7,7

}
7 8 −7 1

4

{√
7
[
B̂yI7,6 + B̂xI7,−6

]
+

√
2B̂zI7,−7

}
7 8 8 1√

2

{
B̂xI7,7 − B̂yI7,−7

}
7 8 −8 1√

2

{
B̂yI7,7 + B̂xI7,−7

}
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and G = 1 in equation (18) that, implicitly covered in the decompositions of tables 4(a), 4(b)
are terms of dimension SI 7 and S7I . In the nomenclature of [11] the following irreducible
tensorial sets, BlB,lS ,lI

l,m (−l � m � l with one of lB, lS, lI necessarily zero), arise, explicitly or
implicitly, from the decompositions listed in tables 4(a), 4(b). Terms linear in magnetic field,
BJ 7, give rise to irreducible tensorial sets B

1,7,0
6,m , B

1,0,7
6,m of rank 6 and B

1,7,0
8,m , B

1,0,7
8,m of rank

8; the tensor components are unitless. Terms of dimension SI 7 and S7I , independent of the
magnetic field, give rise to irreducible tensorial sets B

0,1,7
6,m , B

0,7,1
6,m of rank 6 and B

0,1,7
8,m , B

0,7,1
8,m

of rank 8; the tensor components have units of energy. As noted earlier and in [11], the
transformation of these tensors under rotation depends only on their rank.

As part of this project the above terms have been incorporated into the program EPRNMR
[21] and applied in a recent EPR study of high-spin nuclear Zeeman terms which are required
to explain the hyperfine structure of 49Ti (I = 7/2) in a Ti3+ ion in zircon [20, 24]. Within
error, terms of dimension BI 7 were found to be zero, although those of dimension BI 3, BI 5

had been found [20] to be relatively large and statistically significant. This mirrors the relative
magnitudes of terms of dimension J 4, J 6, the former being large and the latter, within error,
zero. The contribution of terms of dimension SI 7 has yet to be examined.

3.4. Site symmetry constraints on terms of dimension J1J
7
2 in the SH.

The combined requirements of time-reversal invariance and inversion symmetry invariance
restrict the terms in the SH, equation (4), according to equation (21):

ξIk,qξ
−1 = (−1)kIk,q (ξ = θ or Iv) (21)

to terms with k even [10]. In equation (21), θ is the time-inversion operator as defined by
Brink and Satchler [31] and Iv is the inversion operator. Furthermore (see for example Rae
[32] and Weil et al [33]), only sites conforming to one of the 11 Laue crystal classes (point
group symmetry + a centre of inversion) need be considered. Prather [15] has detailed the
procedures for obtaining the tesseral harmonics which transform as the totally symmetric
irreducible representation under the symmetry operations of the 27 non-cubic crystal point
groups. These results have been used by various authors (see for example [10, 23, 34]) to
obtain tables pertinent to the EPR experiment. Here we list in table 5 in the format of table 4
of [10] the non-zero B8,q-parameters (the transformation properties depend only on subscripts
k, q and are independent of superscripts k1, k2) required in the SH for sites of each of the 11
Laue crystal classes. Following Prather [15] and [10] the axis system is chosen such that z

corresponds to the highest-fold rotation axis (Cn) and y corresponds to a C′
2 axis if one exists

(consult references [10, 34] for further details).
As an application of the principles involved, we draw on the example of references [10, 11],

namely, a paramagnetic ion in a C2 (Laue class 2/m) site of α-quartz. For k = 8 the non-
vanishing Bk,q are, in addition to those for k = 2, 4 given in [10], and those for k = 6 given
in [11], the following:

k = 8 q = 0,±2,±4,±6,±8.

As a final comment, it is noted that we have not addressed the possibility that terms of odd k may
exist in the SH—that is, terms which violate time-reversal invariance. We shall be content
to note, following Grachëv [35], that it is always possible, via a unitary transformation, to
eliminate terms with odd k. Restriction of the terms of the SH to those with k even does
not restrict the useful rotation matrix elements A

(k)
g,h to those with k even. One can readily

envisage cases where one might wish to effect an axis transformation for tensor operators Ik,q

or Stevens operators O
q

k where k may be odd. An example might be an axis transformation
of the expressions of table 4. A similar example is given in reference [11], namely, an axis
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Table 5. Non-zero Bl,m (l = 8) coefficients of equation (4) for site symmetries of the 11 Laue
crystal classes. Notation: + ≡ Bl,|m| non-zero; − ≡ Bl,−|m| non-zero (see reference [10] for
further details). Abbreviations: PGS: point group symmetry; LC: Laue class; Tri: Triclinic;
Mono: Monoclinic; Ortho: Orthorhombic; Int: International; Sch: Schoenflies.

Tri Mono Ortho Tetragonal Trigonal Hexagonal Cubic

PGS: 422 622
2 222 4 4mm 32 6 6mm 432

Int.:a 1 m mm2 4̄ 4̄2m 3 3m 6̄ 6̄m2 23 4̄3m
LC: 1̄ 2/m mmm 4/m 4/mmm 3̄ 3̄m 6/m 6/mmm m3 m3m

Sch.:b Ci C2h D2h C4h D4h C3i D3d C6h D6h Th Oh

(S2) (S6)

l = |m| =
8 8 + − + − + + +

7 + −
6 + − + − + + − + + − + +
5 + −
4 + − + − + + − + + +
3 + − + − +
2 + − + − + +
1 + −
0 + + + + + + + + + + +

a The final point group entry in each column indicates also the Laue class (LC).
b The Laue class is also given in Schoenflies notation (Sch.).

transformation of a general expression (equation [27] of [11]) for terms linear in the magnetic
field expressed in Stevens operators.

Appendix

The following are available from the authors or from the sources outlined.

(i) Program ROTSTO together with test data files and a help file. The program is written in
standard FORTRAN specifically for a VAX system with an ALPHA processor. It will be
available without charge directly from the authors or via the shareware facilities of the
International EPR Society (refer to the EPR Newsletter for details).

(ii) Algebraic tables of matrix elements A
(k)
g,h for k = 1–6 prepared in Scientific Workplace

in TEX format. Alternatively these matrix elements can be extracted in algebraic form
directly from the appropriate subroutines of the program ROTSTO; the matrix elements
in the program are formatted precisely as indicated in tables 1, 2 above to facilitate this
extraction. (Reference [19], which detailed many of the calculations in [10] and listed
matrix elements A

(k)
g,h for k = 2, 4, 6, is no longer available. Substantially the same

information and updated tables are included in [24]. The authors undertake to make the
relevant sections of this reference available to interested readers via e-mail.)
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